Abstract

In this work we develop an efficient algorithm for the application of the method of fundamental solutions to inhomogeneous polyharmonic problems, that is problems governed by equations of the form Δ ? u=f, ???, in circular geometries. Following the ideas of Alves and Chen (Adv. Comput. Math. 23:125---142, 2005), the right hand side of the equation in question is approximated by a linear combination of fundamental solutions of the Helmholtz equation. A particular solution of the inhomogeneous equation is then easily obtained from this approximation and the resulting homogeneous problem in the method of particular solutions is subsequently solved using the method of fundamental solutions. The fact that both the problem of approximating the right hand side and the homogeneous boundary value problem are performed in a circular geometry, makes it possible to develop efficient matrix decomposition algorithms with fast Fourier transforms for their solution. The efficacy of the method is demonstrated on several test problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.