Abstract

Given a set S of servers and a set C of clients, an optimal-location query returns a location where a new server can attract the greatest number of clients. Optimal-location queries are important in a lot of real-life applications, such as mobile service planning or resource distribution in an area. Previous studies assume that a client always visits its nearest server, which is too strict to be true in reality. In this paper, we relax this assumption and propose a new model to tackle this problem. We further generalize the problem to finding top-k optimal locations. The main challenge is that, even the fastest approach in existing studies needs to take hours to answer an optimal-location query on a typical real world dataset, which significantly limits the applications of the query. Using our relaxed model, we design an efficient grid-based approximation algorithm called FILM (Fast Influential Location Miner) to the queries, which is orders of magnitude faster than the best-known previous work and the number of clients attracted by a new server in the result location often exceeds 98% of the optimal. The algorithm is extended to finding k influential locations. Extensive experiments are conducted to show the efficiency and effectiveness of FILM on both real and synthetic datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.