Abstract

Abstract A new-type of oxidation–reduction condensation proceeded smoothly to afford carboxylic acid alkyl esters or alkyl phenyl ethers in good to high yields by combined use of alkoxydiphenylphosphines (1) having primary, bulky secondary or tertiary alkoxy groups, a mild quinone-type oxidant such as 2,6-dimethyl-1,4-benzoquinone (DMBQ) and carboxylic acids or phenols. Generally, alkoxydiphenylphosphines were prepared easily from chlorodiphenylphosphine (2) and alcohols in the presence of pyridine, and were isolated by distillation. On the other hand, the phosphines 1 were also prepared in situ from N,N-dimethylaminodiphenylphosphine (3a) and primary or secondary alcohols while primary, bulky secondary or tertiary alkoxydiphenylphosphines were alternatively formed in situ by adding 2 to the nBuLi-treated alcohols in order to perform the above reactions by a one-pot procedure from alcohols and nucleophiles. The reaction of thus formed 1, DMBQ and carboxylic acids or phenols afforded the corresponding alkylated products, including hindered secondary and tertiary alkylated ones, in good to high yields at room temperature. In the case of using chiral secondary alcohols, the corresponding carboxylic acid alkyl esters were obtained as well in high yields with perfect inversion of stereochemistry by SN2 replacement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.