Abstract

Rotor blades of large, modern wind turbines are susceptible to lightning strikes. In order to produce a design that resists lightning strikes, it is crucial to simulate lightning current propagation in the blade components. Since the current in the blade is generated by the superposition of potential and induced electric fields, a coupling exists between electric and magnetic fields which need to be calculated by an imposed integral constraint at each time step. Commercial software packages can deal with such constraints, but it results in time-consuming computations. Therefore, this work aims to develop a numerical methodology able to compute the voltage which drives the lightning current through the structure. In this way, the problem is reformulated as a voltage-driven one which in turn allows a simple subsequent coupling of electrical and magnetic problems. The computation of the voltage waveform was accomplished using the fast Fourier transform and the finite element method (FEM) to compute the structure impedance in the frequency domain. The developed procedure showed high efficiency for a blade subjected to different lightning impulses. It allows a description of the time-dependent lightning current to be given, as well as the distribution of current within the blade conductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.