Abstract

To begin the work presents some redundancy resolution schemes for robotic arms, i.e., the techniques for exploiting the redundant degrees of freedom in the solution of the inverse kinematics problem. This is obviously an issue of major relevance for motion planning and control purposes. In particular, task-oriented kinematics and the basic methods for its inversion at the velocity (first-order differential) level are first recalled. This paper focuses on modeling and simulations of the inverse kinematics of an anthropomorphic redundant robotic structure with seven degrees of freedom and a workspace similar to human arm. Also the kinematic model of the robotic arm in the MATLAB and Simulink environment is presented. A method of resolving the redundancy of a seven degrees of freedom robotic arm when a degree of freedom has a known variation is presented. The kinematic analysis and virtual simulation share similar results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.