Abstract

A line search in a gradient-based optimization algorithm solves the problem of determining the optimal learning rate for a given gradient or search direction in a single iteration. For most problems, this is determined by evaluating different candidate learning rates to find the optimum, which can be expensive. Recent work has provided an efficient way to perform a line search with the use of the Shanks transformation of a Born series derived from the Lippman-Schwinger formalism. In this paper we show that the cost for performing such a line search can be further reduced with the use of the method of the Schur complement domain decomposition, which can lead to a 10-fold total speed-up resulting from the reduced number of iterations to convergence and reduced wall-clock time per iteration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.