Abstract

The oxidation of methane to value-added chemicals provides an opportunity to use this abundant feedstock for sustainable petrochemistry. Unfortunately, such technologies remain insufficiently competitive due to a poor selectivity and a low yield rate for target products. Here we show a photon–phonon-driven cascade reaction that allows for methane conversion to formaldehyde with an unprecedented productivity of 401.5 μmol h−1 (or 40,150 μmol g−1 h−1) and a high selectivity of 90.4% at 150 °C. Specifically, with a ZnO catalyst decorated with single Ru atoms, methane first reacts with water to selectively produce methyl hydroperoxide via photocatalysis, followed by a thermodecomposition step yielding formaldehyde. Single Ru atoms, serving as electron acceptors, improve charge separation and promote oxygen reduction in photocatalysis. This reaction route with minimized energy consumption and high efficiency suggests a promising pathway for the sustainable transformation of light alkanes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.