Abstract
FPGA-based hardware emulators are often used for the verification of LSI functions. They generally have dedicated external memories, such as SDRAMs, to compensate for the lack of memory capacity in FPGAs. In such a case, access between the FPGAs and the dedicated external memory may represent a major bottleneck with respect to emulation speed since the dedicated external memory may have to emulate a large number of memory blocks. In this paper, we propose three methods, “Dynamic Clock Control (DCC),” “Memory Mapping Optimization (MMO),” and “Efficient Access Scheduling (EAS),” to avoid this bottleneck. DCC controls an emulation clock dynamically in accord with the number of memory accesses within one emulation clock cycle. EAS optimizes the ordering of memory access to the dedicated external memory, and MMO optimizes the arrangement of the dedicated external memory addresses to which respective memories will be emulated. With them, emulation speed can be made 29.0 times faster, as evaluated in actual LSI emulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.