Abstract

Image encryption has attracted a lot of interest as an important security application for protecting confidential image data against unauthorized access. An adversary with the power to manipulate cipher image data can crop part of the image out to prevent decryption or render the decrypted image useless. This is known as the occlusion attack. In this paper, we address a vulnerability to the occlusion attack identified in the medical image encryption framework recently proposed in []. We propose adding a pixel scrambling phase to the framework and show through simulation that the extended framework effectively mitigates the occlusion attack while maintaining the other attractive security features. The scrambling is performed using a separate chaotic map which is securely initialized using a secret key and a random nonce to deter chosen-plaintext attacks. Moreover, we show through simulation that the choice of chaotic map used for scrambling is irrelevant to the effectiveness of the scrambling algorithm against the occlusion attack.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.