Abstract
Dempster-Shafer Theory (DST) generalizes Bayesian probability theory, offering useful additional information, but suffers from a high computational burden. A lot of work has been done to reduce the complexity of computations used in information fusion with Dempster’s rule. The main approaches exploit either the structure of Boolean lattices or the information contained in belief sources. Each has its merits depending on the situation. In this paper, we propose sequences of graphs for the computation of the zeta and Mobius transformations that optimally exploit both the structure of distributive lattices and the information contained in belief sources. We call them the Efficient Mobius Transformations (EMT). We show that the complexity of the EMT is always inferior to the complexity of algorithms that consider the whole lattice, such as the Fast Mobius Transform (FMT) for all DST transformations. We then explain how to use them to fuse two belief sources. More generally, our EMTs apply to any function in any finite distributive lattice, focusing on a meet-closed or join-closed subset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.