Abstract

Tukey’s g-and-h distribution has been a powerful tool for data exploration and modeling since its introduction. However, two long standing challenges associated with this distribution family have remained unsolved until this day: how to find an optimal estimation procedure and how to make valid statistical inference on unknown parameters. To overcome these two challenges, a computationally efficient estimation procedure based on maximizing an approximated likelihood function of Tukey’s g-and-h distribution is proposed and is shown to have the same estimation efficiency as the maximum likelihood estimator under mild conditions. The asymptotic distribution of the proposed estimator is derived and a series of approximated likelihood ratio test statistics are developed to conduct hypothesis tests involving two shape parameters of Tukey’s g-and-h distribution. Simulation examples and an analysis of air pollution data are used to demonstrate the effectiveness of the proposed estimation and testing procedures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call