Abstract

In this paper, we report on the nickel oxide (NiO) thin films potentiostatically electrodeposited onto indium-doped tin oxide-coated glass substrates by using two types of organic surfactants: (1) non-ionic: polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) and (2) anionic: sodium dodecyl sulfate (SDS). An aqueous solution containing nickel sulfate precursor and potassium hydroxide buffer was used to grow the samples. The effect of organic surfactants on its structural, morphological, wettability, optical, electrochromic, and in situ colorimetry were studied using X-ray diffraction, scanning electron microscopy, contact angle, FT-IR spectroscopy, optical transmittance, cyclic voltammetry, and CIE system of colorimetry. X-ray diffraction patterns show that the films are polycrystalline, consisting of NiO cubic phase. A nanoporous structure with pore diameter of about 150–200 nm was observed for pure NiO. The films deposited with the aid of organic surfactants exhibits various surface morphological feature. PVP-mediated NiO thin film shows noodle-like morphology with well-defined surface area whereas, an ordered pore structure composed of channels of uniform diameter of about 60–80 nm was observed for PEG. A compact and smooth surface with nanoporous structure stem from SDS helps for improved electrochromic performance compared with that of NiO deposits from surfactant-free solution. Wetting behavior shows, transformation from hydrophilic to superhydrophilic nature of NiO thin films deposited with organic surfactant, which helps for much more paths for electrolyte access. The surfactant-mediated NiO produce high color/bleach transmittance difference up to 57% at 630 nm. On oxidation of NiO/SDS, the CIELAB 1931 2° color space coordinates show the transition from colorless to the deep brown state (L* = 84.41, a* = −0.33, b* = 4.41, and L* = 43.78, a* = 7.15, b* = 13.69), with steady decrease in relative luminance. The highest coloration efficiency of 54 cm2 C−1 with an excellent reversibility of 97% was observed for NiO/SDS thin films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call