Abstract

In this paper, we propose an improved parallel resampling technique. Parallel resampling is a deformable object generation method based on volume data applied to medical simulations. Existing parallel resampling is not suitable for massive computing, because the number of samplings is high and floating-point precision problems may occur. This study addresses these problems to obtain improved user latency when performing medical simulations. Specifically, instead of interpolating values after volume sampling, the efficiency is improved by performing volume sampling after coordinate interpolation. Next, the floating-point error in the calculation of the sampling position is described, and the advantage of barycentric interpolation using a reference point is discussed. The experimental results showed a significant improvement over the existing method. Volume data comprising more than 600 images used in clinical practice were deformed and rendered at interactive speed. In an Internet of Everything environment, medical imaging systems are an important application, and simulation image generation is also valuable in the overall system. Through the proposed method, the performance of the whole system can be improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.