Abstract

Structural identification of glycans is important but remains challenging, for which tandem mass spectrometry has evolved as an indispensable tool. However, it requires additional complex hardware and extra time for ion extraction. Herein, we report a straightforward approach called gold nanoparticles (AuNPs)-assisted in-source cation adduction dissociation (isCAD) for efficient mass spectrometry (MS) dissection of glycans. Although AuNPs have been employed as an inorganic matrix for MALDI MS, this is the first report of AuNP-induced fragmentation. In this approach, AuNPs were employed as an energy absorber for laser ionization as well as a trigger for fragmentation, while residual or deliberately added sodium ions acted as a cationizing agent. The addition of sodium ions induced intensive fragmentation, but the addition of protons suppressed the fragmentation, allowing for facile tuning of the degree of fragmentation. In addition, it was found that larger oligosaccharides and glycans were much easier to fragment as compared with their smaller counterparts, and the use of high-concentration AuNPs effectively suppressed the degree of fragmentation and thereby provided abundant molecular ions. Without any extra hardware and ion extraction, this approach provides a straightforward, cost-efficient and tunable fragmentation for efficient MS dissection of saccharides, including monosaccharides, oligosaccharides, and glycans. Thus, it opens new access to efficient MS dissection of glycans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call