Abstract

In this paper, we describe a protocol framework that can perform classification tasks in a privacy-preserving manner. To demonstrate the feasibility of the proposed framework, we implement two protocols supporting Naive Bayes classification. We overcome the heavy computational load of conventional fully homomorphic encryption-based privacy-preserving protocols by using various optimization techniques. The proposed method differs from previous techniques insofar as it requires no intermediate interactions between the server and the client while executing the protocol, except for the mandatory interaction to obtain the decryption result of the encrypted classification output. As a result of this minimal interaction, the proposed method is relatively stable. Furthermore, the decryption key is used only once during the execution of the protocol, overcoming a potential security issue caused by the frequent exposure of the decryption key in memory. The proposed implementation uses a cryptographic primitive that is secure against attacks with quantum computers. Therefore, the framework described in this paper is expected to be robust against future quantum computer attacks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.