Abstract

AimsThis study aims at formulating combined delivery of Risedronate sodium (RIS) and Vitamin D3 (VITD3) for augmented therapeutic outcome against osteoporosis (OP) using deep lung targeted PAMAM-G5-NH2 dendrimers to minimize RIS gastrointestinal side effects and enhance both drugs bioavailability through absorption from the alveoli directly to the blood. MethodsRIS-PAMAM-G5-NH2, VITD3-PAMAM-G5-NH2, and RIS/VITD3-PAMAM-G5-NH2 were prepared and evaluated in vitro for particle size (PS), zeta potential (ZP), %loading efficiency (%LE), morphology and FTIR. The efficacy of the RIS/VITD3-PAMAM-G5-NH2 compared to oral RIS was evaluated in OP-induced rats by comparing serum calcium, phosphorus, and computed bone mineral density (BMD) pre- and post-treatment. Additionally, a comprehensive metabolomics and molecular pathways approach was applied to find serum potential biomarkers for diagnosis and to evaluate the efficacy of inhaled RIS/VITD3-PAMAM-G5-NH2. Key findingsRIS/VITD3-PAMAM-G5-NH2 was successfully prepared with a %LE of 92.4 ± 6.7 % (RIS) and 83.2 ± 4.4 % (VIT-D3) and a PS of 252.8 ± 34.1 adequate deep lung delivery. RIS/VITD3-PAMAM-G5-NH2 inhalation therapy was able to restore serum calcium, phosphorus, and BMD close to normal levels after 21 days of treatment in OP-induced rats. The WNT-signalling pathway and changes in the metabolite levels recovered to approximately normal levels upon treatment. Moreover, histone acetylation of the WNT-1 gene and miR-148a-3p interference proved to play a role in the regulation of the WNT-signalling pathway during OP progression and treatment. SignificancePulmonary delivery of RIS/VITD3-PAMAM-G5-NH2 offers superior treatment for OP treatment compared to the oral route. Molecular and Metabolic pathways represents key indicators for OP diagnosis and progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call