Abstract

Forward error correction (FEC) is a key capability in modern satellite communications that provide the system designer with the needed flexibility to comply with the different applications' requirements. Reed-Solomon (RS) codes are well known for their ability to optimize between the system power, bandwidth, data rate, and the quality of service. This paper introduces an efficient decoding scheme for decoding the RS codes adhering to the Consultative Committee for Space Data Systems (CCSDS) standards based on Justesen's construction of concatenation. To maintain the standard output size, the proposed scheme first encodes every m - 1 bits using the single-parity-check (SPC) code, while the RS code encodes K SPC codewords into N symbols that are of the same size as CCSDS standard. Decoding on the inner SPC code is based on maximum-likelihood decoding Kaneko algorithm, while for the proposed coding scheme, the reduced test-pattern Chase algorithm is adapted for decoding the outer RS code. The simulation results show the coding gains of 1.4 and 7 dB compared with the algebraic decoding of RS codes over the AWGN and Rayleigh fading channels, respectively. Moreover, the adopted reduced test-pattern Chase algorithm for decoding the RS code achieves an overall complexity reduction of 40% compared with the conventional Chase decoding algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call