Abstract

Quantum annealing is an efficient technology to determine ground state configurations of discrete binary optimization problems, described through Ising Hamiltonians. Here we show that—at very low computational cost—finite temperature properties can be calculated. The approach is most efficient at low temperatures, where conventional approaches like Metropolis Monte Carlo sampling suffer from high rejection rates and therefore large statistical noise. To demonstrate the general approach, we apply it to spin glasses and Ising chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.