Abstract

Helper-dependent adenoviral vectors (HDAd) are devoid of all viral coding sequences and are thus an improvement over early generation Ad because they can provide long-term transgene expression in vivo without chronic toxicity. However, high vector doses are required to achieve efficient hepatic transduction by systemic intravenous injection, and this unfortunately results in dose-dependent acute toxicity. To overcome this important obstacle, we have developed a minimally invasive method to preferentially deliver HDAd into the liver of nonhuman primates. Briefly, a balloon occlusion catheter was percutaneously positioned in the inferior vena cava to occlude hepatic venous outflow. HDAd was injected directly into the occluded liver via a percutaneously placed hepatic artery catheter. Compared to systemic vector injection, this approach resulted in substantially higher hepatic transduction efficiency using clinically relevant low vector doses and was accompanied by mild-to-moderate acute but transient toxicities. Transgene expression was sustained for up to 964 days. These results suggest that our minimally invasive method of delivery can significantly improve the vector's therapeutic index and may be a first step toward clinical application of HDAd for liver-directed gene therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.