Abstract

As the operating speed of digital circuits dramatically increases with the advance of VLSI technology, it is becoming more critical to ensure that the circuits are free from timing-related design errors. In a traditional static timing approach nonfunctional paths cannot be distinguished from functional ones since the functionality of a circuit is ignored. This often results in overestimation of circuit delay and can degrade the circuit performance. In today's design methodology where the use of automated logic synthesis and module-based design are popular, circuits with a very large number of nonfunctional (false) paths are common. This paper describes an efficient logic-level timing analysis approach that can provide an accurate delay estimate of a digital circuit which may have many long false paths. By using logic incompatibilities in a circuit as constraints for critical path search, the algorithm determines the longest sensitizable path without explicit path enumeration. Since the number of false paths that can be implicitly eliminated is potentially exponential to the number of path constraints, performance improvement is significant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.