Abstract

Herein, the poorly water-soluble drug, Tamoxifen (Tmx), was loaded in the amphipathic matrix of human serum albumin (HSA) nanoparticles by a modified desolvation method. In order to enhance the drug loading (DL) and drug entrapment efficiency (DEE) (<2% and 10%, respectively), ultrasonication of Tmx-HSA mixture was performed prior to desolvation process. Tmx loading and entrapment efficiency were optimized by employment of the response surface methodology (RSM)-central composite design (CCD) of experiments. Under the optimum conditions of 1.59mg Tmx/ml concentration, 7.76 pH and 5h incubation of HSA-Tmx, the DL of 6.7% and DEE of 74% are achievable. Particles with the average size of 195nm, zeta potential of −21mV and polydispersity index of 0.09 were produced under these conditions. A more sustained Tmx release behavior was observed from polyethylene glycol (PEG) conjugated nanoparticles in comparison to the non-PEGylated ones. The short-term stability investigation showed no alteration in physicochemical properties of nanoparticles at 4 and 37°C, but small increase in nanoparticles size was observed after three months of storage at room temperature. This is the first report for efficient production of a Tmx delivery system based on HSA nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.