Abstract

Monolayer two-dimensional transition metal dichalcogenides (2D-TMDCs) have gained immense attention for their desirable transport properties and direct bandgap that have led to a plethora of studies on modern nanoelectronic and optoelectronic applications. These properties are known to occur exclusively in TMDCs when thinned down to one or few monolayers. However reduced dimensionality poses a significant challenge for photonics and optoelectronics applications due to poor light absorption and emission dictated by the volume of semiconductor material. Plasmonic nanostructures have been widely studied for enhancing light-matter interactions in wide variety of material systems resulting in increased emission and absorption properties. 2D Materials provide the ultimate lower limit in terms of material thickness, therefore investigation of plasmon/2D Material hybrid material systems with a specific aim to enhance light-matter interactions is essential for practical optoelectronic applications. In this talk, I will discuss increased photoluminescence emission from MoS2 using both periodic plasmonic nanodisc arrays as well as a single plasmonic optical antenna. Additionally, I will describe a systematic study in which we have demonstrated increased light absorption in a monolayer WS2 film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.