Abstract

LFSR reseeding techniques are widely adopted in logic BIST to enhance fault detectability and shorten test-application time for integrated circuits. In order to achieve complete fault coverage, previous reseeding methods often need a prohibitive amount of memory to store all required seeds. In this paper, a new LFSR reseeding technique is presented, which employs the responses of internal nets of the circuit itself as the control signals for changing LFSR states. A novel reseeding architecture containing a net-selection logic module and an LFSR with some inversion logic is presented to generate all the required seeds on-chip in real time with no external or internal storage requirement. Experimental results on ISCAS and large ITC circuits show that the presented technique can achieve 100 % fault coverage with short test time by using only 0.23 ---2.75 % of internal nets and with 2.35 ---4.56 % gate area overhead on average for reseeding control without degrading the original circuit performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.