Abstract

In this article, a method for segmentation-based learning-free Query by Example (QbE) keyword spotting on handwritten documents is proposed. The method consists of three steps, namely preprocessing, feature extraction and matching, which address critical variations of text images (e.g., skew, translation, different writing styles). During the feature extraction step, a sequence of descriptors is generated using a combination of a zoning scheme and a novel appearance descriptor, referred as modified Projections of Oriented Gradients. The preprocessing step, which includes contrast normalization and main-zone detection, aims to overcome the shortcomings of the appearance descriptor. Moreover, an uneven zoning scheme is introduced by applying a denser zoning only on query images for a more detailed representation. This leads to a significant reduction in storage requirements of a document collection. The distance between the query and word sequences is efficiently computed by the proposed Selective Matching algorithm. This algorithm is further extended to handle an augmented set of images originating from a single query image. The efficiency of the proposed method is demonstrated by experimentation conducted on seven publicly available datasets. In these experiments, the proposed method significantly outperforms all state-of-the-art learning-free techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.