Abstract

The characterization of continuous-variable quantum states is crucial for applications in quantum communication, sensing, simulation, and computing. However, a full characterization of multimode quantum states requires a number of experiments that grows exponentially with the number of modes. Here we propose an alternative approach where the goal is not to reconstruct the full quantum state, but rather to estimate its characteristic function at a given set of points. For multimode states with reflection symmetry, we show that the characteristic function at M points can be estimated using only O(logM) copies of the state, independently of the number of modes. When the characteristic function is known to be positive, as in the case of squeezed vacuum states, the estimation is achieved by an experimentally friendly setup using only beamsplitters and homodyne measurements. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.