Abstract

In this study, we consider the problem of node ranking in a random network. A Markov chain is defined for the network, and its transition probability matrix is unknown but can be learned by sampling random interactions among nodes. Our objective is to decompose the Markov chain into several ergodic classes and select the best node in each ergodic class. We propose a dynamic sampling procedure, which gives a probability guarantee on correct decomposition and maximizes a weighted probability of correct selection of the best node in each ergodic class. Numerical experiment results demonstrate the efficiency of the proposed sampling procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.