Abstract

We report a study of the basic characteristics of laser polishing of fused silica with a protocol that is particularly suitable for surface smoothing of micro-optic elements fabricated by a laser ablation process. We describe a new, to our knowledge, approach based on scanning a highly controlled small size laser beam and melting areas of tens to hundreds of micrometers of glass using a computer-controlled raster scan process, which does not require beam shaping, substrate preheating, or special atmospheres. Special test samples of silica substrates with prescribed spatial frequency content were polished using a range of irradiation conditions with the beam from a well-controlled CO2 laser operating at a wavelength of 10.59 microm. An analysis is presented of the laser-generated reduction in surface roughness in terms of measurements of the spatial frequency characteristics, and the results are compared with the predictions of a simple model of surface-tension-driven mass flow within the laser-melted layer. This technique is shown to be capable of smoothing silica surfaces with approximately 1 microm scale roughness down to levels < 1 nm with no net effect on the as-machined net surface shape, at realistic production rates without a preheating stage, and with noncritical residual stresses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.