Abstract

Proton translocating NADH:ubiquinone oxidoreductase (complex I) is the largest membrane bound multiprotein complex of the respiratory chain and the only one for which no molecular structure is available so far. Thus, information on the mechanism of this central enzyme of aerobic energy metabolism is still very limited. As a new approach to analyze complex I, we have recently established the strictly aerobic yeast Yarrowia lipolytica as a model system that offers a complete set of convenient genetic tools and contains a complex I that is stable after isolation. For crystallization of complex I and to obtain its molecular structure it is a prerequisite to prepare large amounts of highly pure enzyme. Here we present the construction of his-tagged complex I that for the first time allows efficient affinity purification. Our protocol recovers almost 40% of complex I present in Yarrowia mitochondrial membranes. Overall, 40–80 mg highly pure and homogeneous complex I can be obtained from 10 l of an overnight Y. lipolytica culture. After reconstitution into asolectin proteoliposomes, the purified enzyme exhibits full NADH:ubiquinone oxidoreductase activity, is fully sensitive to inhibition by quinone analogue inhibitors and capable of generating a proton-motive force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.