Abstract

In recent years, with the rapid development of the Internet of Things, large-scale botnet attacks have occurred frequently and have become an important challenge to network security. As artificial intelligence technology continues to evolve, intelligent detection solutions for botnets are constantly emerging. Although graph neural networks are widely used for botnet detection, directly handling large-scale botnet data becomes inefficient and challenging as the number of infected hosts increases and the network scale expands. Especially in the process of node level learning and inference, a large number of nodes and edges need to be processed, leading to a significant increase in computational complexity and posing new challenges to network security. This paper presents a novel approach that can accurately identify diverse intricate botnet architectures in extensive IoT networks based on the aforementioned circumstance. By utilizing GraphSAINT to process large-scale IoT botnet graph data, efficient and unbiased subgraph sampling has been achieved. In addition, a solution with enhanced information representation capability has been developed based on the Graph Isomorphism Network (GIN) for botnet detection. Compared with the five currently popular graph neural network (GNN) models, our approach has been tested on C2, P2P, and Chord datasets, and higher accuracy has been achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call