Abstract
In this paper, we study the Time-Dependent k Nearest Neighbor (TD-kNN) query on moving objects that aims to return k objects arriving at the query location with the least traveling cost departing at a given time t. Although the kNN query on moving objects has been widely studied in the scenario of the static road network, the TD-kNN query tends to be more complicated and challenging because under the time-dependent road network, the cost of each edge is measured by a cost function rather than a fixed distance value. To tackle such difficulty, we adopt the framework of GLAD and develop an advanced index structure to support efficient fastest travel cost query on time-dependent road network. In particular, we propose the Time-Dependent H2H (TD-H2H) index, which pre-computes the aggregated weight functions between each node to some specific nodes in the decomposition tree derived from the road network. Additionally, we establish a grid index on moving objects for candidate object retrieval and location update. To further accelerate the TD-kNN query, two pruning strategies are proposed in our solution. Apart from that, we extend our framework to tackle the time-dependent approachable kNN (TD-AkNN) query on moving objects targeting for the application of taxi-hailing service, where the moving object might have been occupied. Extensive experiments with different parameter settings on real-world road network show that our solutions for both TD-kNN and TD-AkNN queries are superior to the competitors in orders of magnitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.