Abstract

The prevalent use of organic materials in manufacturing is a fire safety concern, and motivates the need for predictive thermal decomposition models. A critical component of predictive modeling is numerical inference of kinetic parameters from bench scale data. Currently, an active area of computational pyrolysis research focuses on identifying efficient, robust methods for optimization. This paper demonstrates that kinetic parameter calibration problems can successfully be solved using classical gradient-based optimization. We explore calibration examples that exhibit characteristics of concern: high nonlinearity, high dimensionality, complicated schemes, overlapping reactions, noisy data, and poor initial guesses. The examples demonstrate that a simple, non-invasive change to the problem formulation can simultaneously avoid local minima, avoid computation of derivative matrices, achieve a computational efficiency speedup of 10x, and make optimization robust to perturbations of parameter components. Techniques from the mathematical optimization and inverse problem communities are employed. By re-examining gradient-based algorithms, we highlight opportunities to develop kinetic parameter calibration methods that should outperform current methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call