Abstract

Inefficient endosomal escape and poor nuclear import are thought to contribute to low gene transfer efficiency of polycations. To overcome these drawbacks, we prepared multiple gene delivery formulations including low cytotoxic polycation, histone containing NLSs and chloroquine as the endosomolytic agent. Comb-shaped poly (L-glutamic acid) grafted low-molecular-weight polyethylenimine (PLGE) copolymer was synthesized by aminolysis of poly-γ-benzyl-L-glutamate using low-molecular-weight polyethylenimine (800 Da). The formation of DNA/histone/PLGE terplex was observed by atomic force microscope and gel retardation assay. The particle size and zeta potential of DNA complexes with varying content of histone were also measured to confirm the terplex formation. Cytotoxicity of vectors was assayed by MTT. Multiple gene delivery formulations were optimized to their best transfection efficiency that was monitored by fluorescence microscope and flow cytometry. In vivo gene delivery of the optimal formulation was evaluated by the GFP-expression levels in drosophila melanogaster. The DNA/histone/PLGE terplex was successfully formed. The PLGE and histone together condensed DNA into small, discrete particles (less than 200 nm in diameter) in isotonic solution. Cytotoxicity of PLGE and histone were much lower than that of PEI 25 K. Either histone or chloroquine contributed to enhancing the levels of transfection activity of PLGE polymer. However, chloroquine and histone did not show a synergistic effect on the improvement of transfection efficiency. The optimal formulation was the DNA/histone/PLGE terplex at the N/P ratio of 15 and histone/ DNA weight ratio of 0.8. Compared with Lipofectamine 2000 and PEI 25 K, the optimal formulation showed significantly increased levels of GFP-expression both in vitro and in vivo. This formulation provided a versatile approach for preparing high efficiency of the polycation-based gene vectors. It also reinforced the finding of earlier studies that nuclear import and endosomal escape were rate-limiting steps for nonviral gene delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call