Abstract

Existing interval constraint logic programming languages, such as BNR Prolog, work under the framework of interval narrowing and are deficient in solving systems of linear constraints over real numbers, which constitute an important class of problems in engineering and other applications. In this paper, we suggest to separate linear equality constraint solving from inequality and non-linear constraint solving. The implementation of an efficient interval linear constraint solver, which is based on the preconditioned interval Gauss-Seidel method, is proposed. We show how the solver can be adapted to incremental execution and incorporated into a constraint logic programming language already equipped with a non-linear solver based on interval narrowing. The two solvers share common interval variables, interact and cooperate in a round-robin fashion during computation, resulting in an efficient interval constraint arithmetic language CIAL. The CIAL prototypes, based on CLP(R), are constructed and compared favorably against several major interval constraint logic programming languages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call