Abstract

Computer simulations are increasingly used to access thermo-kinetic information underlying structural transformation of protein kinases. Such information are necessary to probe their roles in disease progression and interactions with drug targets. However, the investigations are frequently challenged by forbiddingly high computational expense, and by the lack of standard protocols for the design of low dimensional physical descriptors that encode system features important for transitions. Here, we consider the demarcating characteristics of the different states of Abelson tyrosine kinase associated with distinct catalytic activity to construct a set of physically meaningful, orthogonal collective variables that preserve the slow modes of the system. Independent sampling of each metastable state is followed by the estimation of global partition function along the appropriate physical descriptors using the modified Expectation Maximized Molecular Dynamics method. The resultant free energy barriers are in excellent agreement with experimentally known rate-limiting dynamics and activation energy computed with conventional enhanced sampling methods. We discuss possible directions for further development and applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.