Abstract
Foot-and-mouth disease (FMD) is a devastating acute viral disease of livestock with cloven hooves. Among various therapeutic control measures, RNA interference (RNAi) is one of the methods being explored to inhibit FMD virus replication and spread. The RNAi is achieved by short hairpin RNAs or artificial microRNAs (amiRNAs). Utility of amiRNAs as antiviral, targeting conserved regions of the viral genome is gaining importance. However, delivery of miRNA in vivo is still a challenge. In this study, the efficacy of amiRNAs in preventing FMD virus replication in a permissive cell culture system was investigated, by generating stable cell lines expressing amiRNAs targeting three functional regions of the FMD virus (FMDV) genome (IRES, 3B3 and 3D). The results showed that amiRNA targeting 3D polymerase is relatively more efficient. However, expression of multiple microRNAs targeting the three regions did not exhibit additive effect. The data suggest that 3D specific miRNA is a potential valid strategy in developing novel antiviral measures against FMDV infection. Keywords: artificial microRNA; foot-and-mouth disease virus; virus inhibition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.