Abstract

Finding the form of synaptic plasticity is critical to understanding its functions underlying learning and memory. We investigated an efficient method to infer synaptic plasticity rules in various experimental settings. We considered biologically plausible models fitting a wide range of in-vitro studies and examined the recovery of their firing-rate dependence from sparse and noisy data. Among the methods assuming low-rankness or smoothness of plasticity rules, Gaussian process regression (GPR), a nonparametric Bayesian approach, performs the best. Under the conditions measuring changes in synaptic weights directly or measuring changes in neural activities as indirect observables of synaptic plasticity, which leads to different inference problems, GPR performs well. Also, GPR could simultaneously recover multiple plasticity rules and robustly perform under various plasticity rules and noise levels. Such flexibility and efficiency, particularly at the low sampling regime, make GPR suitable for recent experimental developments and inferring a broader class of plasticity models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.