Abstract
Given the importance of energy storage and its hybridization with renewable technologies for the energy transition, the development of redox flow batteries (RFB) is receiving particular attention. Among the various emerging technologies, aqueous organic redox flow batteries (AORFBs) are of particular interest, as the objectives in terms of durability, cost, and safety can be achieved thanks to the possibilities offered by molecular engineering. While anthraquinones have been widely explored as negolytes, few works report the use of naphthoquinones. This work aims to exploit an innovative in situ and cost-effective method for the one-pot synthesis of water-soluble naphthoquinones for application as a negolyte in redox flow batteries. As exemplified with alizarin, the energy of the naphthoquinone synthetic reaction in fuel cell mode can be recovered and the electrolyte solution used directly in redox flow batteries without purification. A 0.3 M naphthoquinone solution paired with 0.6 M ferrocyanide demonstrated good stability compared with other naphthoquinones, with a capacity fade rate of 0.017%/cycle (0.84%/day) over 320 cycles. Additionally, the system exhibited one of the highest energy efficiencies (82%) and a power density of 80-105 mW cm-2 at 50% SOC. These first results are promising for further exploration of new water-soluble naphthoquinones efficiently synthesized from hydroxyanthraquinones for application in AORFBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.