Abstract

Emerging nonvolatile main memory (NVMM) suffers from secure vulnerability due to its nonvolatility. To address this issue, existing methods tend to employ the encryption engine on the CPU side for encryption. However, this incurs large energy and latency overhead due to the massive data movement between the CPU and NVMM. On the other hand, popular encryption algorithms like the Advanced Encryption Standard (AES) usually involve massive bit-level parallelism. As a result, an emerging technology named <i>logic-in-memory</i> (<i>LiM</i>), which leverages the electrical characteristics of nonvolatile devices to enable efficient in-memory Boolean operations in parallel, is a promising solution to eliminating data movement overhead and enables faster and more energy-efficient encryption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.