Abstract

Polygenic Risk Scores (PRS) combine genotype information across many single-nucleotide polymorphisms (SNPs) to give a score reflecting the genetic risk of developing a disease. PRS might have a major impact on public health, possibly allowing for screening campaigns to identify high-genetic risk individuals for a given disease. The "Clumping+Thresholding" (C+T) approach is the most common method to derive PRS. C+T uses only univariate genome-wide association studies (GWAS) summary statistics, which makes it fast and easy to use. However, previous work showed that jointly estimating SNP effects for computing PRS has the potential to significantly improve the predictive performance of PRS as compared to C+T. In this paper, we present an efficient method for the joint estimation of SNP effects using individual-level data, allowing for practical application of penalized logistic regression (PLR) on modern datasets including hundreds of thousands of individuals. Moreover, our implementation of PLR directly includes automatic choices for hyper-parameters. We also provide an implementation of penalized linear regression for quantitative traits. We compare the performance of PLR, C+T and a derivation of random forests using both real and simulated data. Overall, we find that PLR achieves equal or higher predictive performance than C+T in most scenarios considered, while being scalable to biobank data. In particular, we find that improvement in predictive performance is more pronounced when there are few effects located in nearby genomic regions with correlated SNPs; for instance, in simulations, AUC values increase from 83% with the best prediction of C+T to 92.5% with PLR. We confirm these results in a data analysis of a case-control study for celiac disease where PLR and the standard C+T method achieve AUC values of 89% and of 82.5%. Applying penalized linear regression to 350,000 individuals of the UK Biobank, we predict height with a larger correlation than with the best prediction of C+T (∼65% instead of ∼55%), further demonstrating its scalability and strong predictive power, even for highly polygenic traits. Moreover, using 150,000 individuals of the UK Biobank, we are able to predict breast cancer better than C+T, fitting PLR in a few minutes only. In conclusion, this paper demonstrates the feasibility and relevance of using penalized regression for PRS computation when large individual-level datasets are available, thanks to the efficient implementation available in our R package bigstatsr.

Highlights

  • Polygenic Risk Scores (PRS) combine genotype information across many single-nucleotide polymorphisms (SNPs) to give a score reflecting the genetic risk of developing a disease

  • We present a comprehensive comparative study of our implementation of penalized logistic regression (PLR), which we compare to the C+T method and the T-Trees algorithm, a derivation of random forests that has shown high predictive performance (Botta et al 2014)

  • We report three different scores of prediction: one including all the SNPs remaining after clumping, one including only the SNPs remaining after clumping and that have a P-value under the genome-wide association studies (GWAS) threshold of significance (P, 5 Á 1028, “C+T-stringent”), and one that maximizes the AUC (“C+T-max”) for 102 P-value thresholds between 1 and 102100 (Table S2)

Read more

Summary

Introduction

Polygenic Risk Scores (PRS) combine genotype information across many single-nucleotide polymorphisms (SNPs) to give a score reflecting the genetic risk of developing a disease. We present a comprehensive comparative study of our implementation of penalized logistic regression (PLR), which we compare to the C+T method and the T-Trees algorithm, a derivation of random forests that has shown high predictive performance (Botta et al 2014). In this comparison, we do not include any LMM method, yet, L2-PLR should be very similar to LMM methods. We find that PLR achieves higher predictive performance than C+T except in highly underpowered cases (AUC values lower than 0.6), while being scalable to biobank data

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call