Abstract
This paper presents computationally efficient implementations for several recent algorithms based on the iterative adaptive approach (IAA) for uniformly sampled one- and two-dimensional data sets, considering both the complete data case, and the cases when the data sets are missing samples, either lacking arbitrary locations, or having gaps or periodically reoccurring gaps. By exploiting the method's inherent low displacement rank, together with the development of suitable Gohberg-Semencul representations, and the use of data dependent trigonometric polynomials, the proposed implementations are shown to offer a reduction of the necessary computational complexity by at least one order of magnitude. Numerical simulations together with theoretical complexity measures illustrate the achieved performance gain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.