Abstract

Gaseous mercury pollution control technologies with low stability and high releasing risks always face with great challenges. Herein, we developed one halloysite nanotubes (HNTs)-supported tungsten diselenide (WSe2) composite (WSe2/HNTs) by one-pot solvothermal approach, curing Hg0 from complicated flue gas (CFG) and reducing second environment risks. WSe2 as a monolayer with nano-flower structure and HNTs with rod shapes in the as-prepared sorbent exhibited outstanding synergy efficiency, resulting in exceptional performance for Hg0 removal with high capture capacity of 30.6 mg·g−1 and rate of 9.09 μg·g−1·min−1, which benefited from the high affinity of selenium and mercury (1 ×1045) and the adequate exposure of Se-terminated. The adsorbent showed beneficial tolerance to high amount of NOx and SOx. An online lab-built thermal decomposition system (TPD-AFS) was employed to explore Hg species on the used-sorbent, finding that the adsorbed-mercury species were principally mercury selenide (HgSe). Density functional theory calculations indicated that the hollow-sites were the major adsorption sites and exhibited excellent selectivity for Hg0, as well as HgSe generation needed to overcome the 0.32 eV energy barrier. The adsorbed mercury displayed high environmental stability after the leaching toxicity test, which significantly decreased its secondary environmental risks. With these advantages, WSe2/HNTs possess enormous potential to achieve the effective and permanent immobilization of gaseous mercury from CFG in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.