Abstract

A digital processor dedicated to edge-based image vector generation has been developed aiming at real-time image recognition. The processor consists of an on-chip memory and 16 single instruction multiple data (SIMD) processing elements. The capacity of the on-chip memory as well as the overhead for starting the processing have been minimized by introducing a seamless data transferring scheme from memory to processing elements. The 16 SIMD processing elements work together either as accumulators or as shift registers, thus achieving a very efficient generation of two different kinds of feature vector: projected principal-edge distribution (PPED)[3,4] and averaged principal-edge distribution (APED).[5] Concurrent use of these two vectors is shown to be very important for robust image recognition.[5] The chip was fabricated using 0.18-µm complementary metal oxide semiconductor (CMOS) technology and the generation of 64-dimension PPED and APED vectors at 84.7 and 83.9 fps, respectively, from video graphics array (VGA) size images was demonstrated at 62.5 MHz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call