Abstract

Many chaos-based encryption methods have been presented and discussed in the last two decades, but very few of them are suitable to secure transmission on noisy channels or respect the standard of the National Institute of Standards and Technology (NIST). This paper tackles the problem and presents a novel chaos-based cryptosystem for secure transmitted images. The proposed cryptosystem overcomes the drawbacks of existing chaotic algorithms such as the Socek, Xiang, Yang, and Wong methods. It takes advantage of the increasingly complex behavior of perturbed chaotic signals. The perturbing orbit technique improves the dynamic statistical properties of generated chaotic sequences, permits the proposed algorithm reaching higher performance, and avoids the problem of error propagation. Finally, many standard tools, such as NIST tests, are used to quantify the security level of the proposed cryptosystem, and experimental results prove that the suggested cryptosystem has a high security level, lower correlation coefficients, and improved entropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.