Abstract

We have developed a modified Patient Rule-Induction Method (PRIM) as an alternative strategy for analyzing representative samples of non-experimental human data to estimate and test the role of genomic variations as predictors of disease risk in etiologically heterogeneous sub-samples. A computational limit of the proposed strategy is encountered when the number of genomic variations (predictor variables) under study is large (>500) because permutations are used to generate a null distribution to test the significance of a term (defined by values of particular variables) that characterizes a sub-sample of individuals through the peeling and pasting processes. As an alternative, in this paper we introduce a theoretical strategy that facilitates the quick calculation of Type I and Type II errors in the evaluation of terms in the peeling and pasting processes carried out in the execution of a PRIM analysis that are under-estimated and non-existent, respectively, when a permutation-based hypothesis test is employed. The resultant savings in computational time makes possible the consideration of larger numbers of genomic variations (an example genome-wide association study is given) in the selection of statistically significant terms in the formulation of PRIM prediction models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.