Abstract
Paraoxonase 1 (PON1) has been described as an efficient catalytic bioscavenger due to its ability to hydrolyze organophosphates (OPs) and chemical warfare nerve agents (CWNAs). It is the future most promising candidate as prophylactic medical countermeasure against highly toxic OPs and CWNAs. Most of the studies conducted so far have been focused on the hydrolyzing potential of PON1 against nerve agents, sarin, soman, and VX. Here, we investigated the hydrolysis of tabun by PON1 with the objective of comparing the hydrolysis potential of human and rabbit serum purified and recombinant human PON1. The hydrolysis potential of PON1 against tabun, sarin, and soman was evaluated by using an acetylcholinesterase (AChE) back-titration Ellman method. Efficient hydrolysis of tabun (100nM) was observed with ∼25–40mU of PON1, while higher concentration (80–250mU) of the enzyme was required for the complete hydrolysis of sarin (11nM) and soman (3nM). Our data indicate that tabun hydrolysis with PON1 was ∼30–60times and ∼200–260times more efficient than that with sarin and soman, respectively. Moreover, the catalytic activity of PON1 varies from source to source, which also reflects their efficiency of hydrolyzing different types of nerve agents. Thus, efficient hydrolysis of tabun by PON1 suggests its promising potential as a prophylactic treatment against tabun exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.