Abstract

An efficient catalytic method for the synthesis of benzyl- and dibenzylamines by hydrogenating oximes and Schiffbases was developed on palladium supported high-porosity foamed ceramic block catalyst. The multiple regeneration ability of the foamed ceramic block catalyst can significantly decrease the Pd consumption as compared to the use of the conventional 10%Pd/C catalyst. Owing to a high hardness of the foamed ceramic catalyst, the reaction mixture can rapidly be removed from the reactor without using filtering devices. The structures produced by the reaction are fragments of biologically active and natural molecules. Antiproliferative properties of dibenzylamines revealed on the sea urchin embryo model suggest that these compounds can be considered as promising agents for the design of new anticancer drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call