Abstract

Hydrogen is a promising carbon-neutral energy carrier for a future decarbonized energy sector. This work presents process simulation studies of the gas switching reforming (GSR) process for hydrogen production with integrated CO2 capture (GSR-H2 process) at a minimal energy penalty. Like the conventional steam methane reforming (SMR) process, GSR combusts the off-gas fuel from the pressure swing adsorption unit to supply heat to the endothermic reforming reactions. However, GSR completes this combustion using the chemical looping combustion mechanism to achieve fuel combustion with CO2 separation. For this reason, the GSR-H2 plant incurred an energy penalty of only 3.8 %-points relative to the conventional SMR process with 96% CO2 capture. Further studies showed that the efficiency penalty is reduced to 0.3 %-points by including additional thermal mass in the reactor to maintain a higher reforming temperature, thereby facilitating a lower steam to carbon ratio. GSR reactors are standalone bubbling fluidized beds that will be relatively easy to scale up and operate under pressurized conditions, and the rest of the process layout uses commercially available technologies. The ability to produce clean hydrogen with no energy penalty combined with this inherent scalability makes the GSR-H2 plant a promising candidate for further research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.