Abstract

One-directional electron transport between a photocatalyst and redox mediator is crucial for achieving highly active Z-scheme water-splitting photocatalysis. Herein, a photoredox cascade catalyst that artificially mimics the electron transport chain in natural photosynthesis was synthesized from a Pt-TiO2 nanoparticle catalyst, two photosensitizers (RuCP6 and RuP6), and a visible-light-transparent electron mediator (HCRu). During photocatalytic hydrogen evolution in the presence of a redox-reversible electron donor, [Co(bpy)3]2+ (bpy = 2,2'-bipyridine), the HCRu-Zr-RuCP6-Zr-RuP6@Pt-TiO2 (PRCC-1) photocatalyst exhibited the highest reported initial (1 h) apparent quantum yield (iAQY = 2.23%) of dye-sensitized TiO2 photocatalysts to date. Furthermore, PRCC-1 successfully produced hydrogen when using hydroquinone monosulfonate (H2QS-) as the hydrogen source.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call