Abstract

The effect of n-type interlayer in hybrid white organic light-emitting diodes (WOLEDs) has been systematically investigated by using various n-type materials. A new finding, that the triplet energy rather than electron mobility or hole-blocking ability of interlayer plays a more positive role in the performance of hybrid WOLEDs, is demonstrated. Based on the new finding, a more efficient n-type interlayer bis[2-(2-hydroxyphenyl)-pyridine] beryllium has been employed to realize a high-performance hybrid WOLED. The resulting device (without n-doping technology) exhibits low voltages (i.e., 2.8 V for 1 cd/m2, 3.9 V for 100 cd/m2) and low efficiency roll-off (i.e., 11.5 cd/A at 100 cd/m2 and 11.2 cd/A at 1000 cd/m2). At the display-relevant luminance of 100 cd/m2, a total power efficiency of 16.0 lm/W, a color rendering index of 73 and an extremely long lifetime of 12596265 h are obtained. Such superior results not only comprehensively indicate that the n-type materials are effective interlayers to develop high-performance hybrid WOLEDs but also demonstrate a significant step towards real commercialization in WOLEDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call