Abstract

Researchers have shown a significant amount of interest in synthesizing high energy density supercapacitors using a simplest, fast, and low cost technique. The electrochemical performance of supercapacitors can be impacted by the surface area and morphology of electrode materials. A one-step, rapid, and economical microwave-assisted synthesis technique was employed in this study in order to prepare mesoporous nanosheets that are composed of zinc sulfide. The ZnS-based nanosheets possess a large surface area of ∼120 m2g−1 and a mesoporous structure of a pore diameter of <22 nm, which offers numerous electrochemical active sites and it facilitates an excellent super capacitive performance, which is due to its shortened ion/electron diffusion path. The prepared mesoporous nanosheets exhibit a higher specific capacitance of 2282 Fg−1 (1037 C/g) when subjected to a 1 Ag−1 in 2 M KOH aqueous electrolyte with high capability rate. The fabricated device exhibits a high specific capacitance of 252.5 Fg−1 (140 C/g) at 1 Ag−1, which produces a remarkable energy density of about 90 Whkg−1 at 800 Wkg−1 value of power density and an excellent retention of ∼95 % after 10,000 cycles at 6 Ag−1. This study designed an instant, straightforward and low-cost approach to fabricate ZnS nanosheet electrode materials that exhibit excellent performance for supercapacitor applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.